
PHYSICAL REVIEW MATERIALS 1, 053407 (2017)

Generalization of the binary structural phase field crystal model

Nathan Smith and Nikolas Provatas
Department of Physics, McGill University, Montreal, Quebec, Canada H3A 0G4

(Received 28 August 2017; published 31 October 2017)

Two improvements to the binary structural phase field crystal (XPFC) theory are presented. The first is an
improvement to the phenomenology for modelling density-density correlation functions and the second extends
the free energy of the mixing term in the binary XPFC model beyond ideal mixing to a regular solution
model. These improvements are applied to study kinetics of precipitation from solution. We observe a two-step
nucleation pathway similar to recent experimental work [N. D. Loh, S. Sen, M. Bosman, S. F. Tan, J. Zhong,
C. A. Nijhuis, P. Král, P. Matsudaira, and U. Mirsaidov, Nat. Chem. 9, 77 (2017); A. F. Wallace, L. O. Hedges,
A. Fernandez-Martinez, P. Raiteri, J. D. Gale, G. A. Waychunas, S. Whitelam, J. F. Banfield, and J. J. De Yoreo,
Science 341, 885 (2013)] in which the liquid solution first decomposes into solute-poor and solute-rich regions,
followed by precipitate nucleation of the solute-rich regions. Additionally, we find a phenomenon not previously
described in the literature in which the growth of precipitates is accelerated in the presence of uncrystallized
solute-rich liquid regions.
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I. INTRODUCTION

The study of alloys in materials physics is a pursuit
of incredibly broad impact, affecting industries as diverse
as those dealing with commercial materials such as steel
and aluminium alloys to nanofabrication and optoelectronics.
Understanding of alloy properties can be difficult due to their
strong dependence on microstructure which forms through
nonequilibrium processes during their manufacturing. In situ
measurements of microstructure formation, especially at the
atomic level, are rarely feasible.

A broad spectrum of theoretical and numerical techniques
has been successful at predicting microstructure formation.
In particular, the phase field crystal (PFC) technique has been
successful in describing microstructure at diffusive time scales
and atomic length scales at high temperatures where other
techniques including kinetic Monte Carlo, diffusive molecular
dynamics, and accelerated molecular dynamics can fail.

In this paper, we focus on extending a branch of binary
PFC theory known as the binary structural phase field crystal
(XPFC) model—where the X in XPFC signifies a class of PFC
models constructed to controllably simulate a robust range of
metallic and nonmetallic crystal symmetries compared to the
original PFC models. PFC binary models have been successful
in describing a broad selection of phenomena in binary alloys.
These successes include eutectic and dendritic solidification
[1], the Kirkendall effect [2,3], solute drag [4], clustering and
precipitation [5–7], colloidal ordering in drying suspensions
[8], epitaxial growth and island formation [9,10], and ordered
crystals [11,12] to name a few.

The PFC theory is derived from classical density functional
theory (CDFT) and, as such, it can be considered a simplified
density functional theory. In a cruder sense, PFC theories
can also be seen as phase field models containing an order
parameter related to density that can attain periodic states. In
practice, two different variants of the PFC theory have been
extensively used to model binary alloys, as alluded to above:
The original model developed by Elder et al. [1] and the XPFC
model developed by Greenwood et al. [13].

The original model was the first PFC theory of binary
alloys and contains several important physical properties of

binary alloys. However, it is a reduced form of CDFT and it
therefore lacks completeness in its ability to describe binary
alloys. Specifically, the original model uses an expansion
in concentration that is actually a density difference, not a
concentration, and the model has a limited ability to describe a
realistic or robust range of phase diagrams. The original model
also uses a very simplified correlation kernel which limits its
ability to describe a variety of crystal lattice structures.

The binary XPFC model is an improvement that ameliorates
the above problems. The concentration is left unexpanded,
allowing for construction of realistic global phase diagrams in-
stead of local expansions. More significantly, the XPFC model
provides a phenomenology for modeling two-point correlation
functions that succeeded in describing solidification of a
variety of lattice structures, as well as transformations between
different crystal lattices. Simplifications of the multimodal
approach first introduced with the XPFC formalism have
been used to produce hexagonal, square, kagome, honeycomb,
rectangular, and other lattices in two dimensions [14].

In introducing its phenomenology for modeling correlation
functions, the original binary XPFC theory tacitly assumes
that there is some preferred structure at high concentration
and some other structure preferred at low concentration. This
assumption can be limiting in situations where a specific
crystalline structure occurs at intermediate concentrations. An
important example is that of materials with a syntectic reaction.
At the syntectic point a solid of intermediate concentration
solidifies along the interface between a solute-rich and solute-
poor liquid. The binary XPFC model also assumes no long-
wavelength correlations in the concentration field, which,
in practice, means the model has an ideal free energy of
mixing. This is another limitation of the XPFC model because
the enthalpy of mixing is not generally zero for real alloy
systems.

The goal of the current paper is threefold: The first two
goals are to present two important improvements to the
binary XPFC theory. The first improvement is a more general
phenomenology for modeling pair-correlation functions of a
binary material. The second improvement is to extend the free
energy of mixing beyond ideality to account for circumstances
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when the enthalpy of mixing is not negligible. The third goal
is to use the XPFC model derived herein to elucidate the
multistep nucleation process observed in certain diffusion-
limited systems precipitating gold and silver nanoparticles
from solution [15].

II. BINARY CDFT

We begin with a classical density functional theory for
binary systems. The intrinsic free-energy functional can be
approximated by expanding about a reference mixture state
with number densities ρ0

A for component A and ρ0
B for

component B:

βF[ρA,ρB]

=
∑

i

∫
dr

{
ρi(r) ln

(
ρi(r)

ρ0
i

)
− (

1 − βμ0
i

)
�ρi(r)

}

−1

2

∑
i,j

�ρi(r) ∗ C
(2)
ij (r,r ′) ∗ �ρj (r ′), (1)

where the sums run over components A and B, μ0
i is the

reference chemical potential of component i, �ρi is the
deviation from the reference density of component i, C(2)

ij (r,r ′)
is the direct correlation function of the reference mixture, and
∗ denotes an integral over repeated arguments, i.e.,

f (r) ∗ g(r) ≡
∫

dr f (r) g(r) (2)

and β = 1/kBT where T is temperature and kB is Boltzmann’s
constant. It is convenient to change variables to a dimension-
less total density n(r) and local concentration c(r):

n(r) = �ρ

ρ0
= �ρA + �ρB

ρ0
A + ρ0

B

, (3)

c(r) = ρB

ρ
= ρB

ρA + ρB

. (4)

Scaling out a factor of the total reference density, ρ0, we can
break the free-energy functional in these new variables into
three parts:

βF[n,c]

ρ0
= βFid[n]

ρ0
+ βFmix[n,c]

ρ0
+ βFex[n,c]

ρ0
, (5)

where Fid, Fmix, and Fex are the ideal, mixing, and excess free
energies, respectively. These are defined as

βFid

ρ0
=

∫
dr{[n(r) + 1] ln[n(r) + 1] − (1 − βμ0)n(r)}

(6)

and

βFmix

ρ0
=

∫
dr

{
[n(r) + 1]

×
[
c ln

(
c

c0

)
+ (1 − c) ln

(
1 − c

1 − c0

)]}
, (7)

where we have introduced μ0 = μ0
A + μ0

B as the total chemical
potential of the reference mixture and c0 = ρ0

B/ρ0 as the
reference concentration. Assuming that the local concentration

c(r) varies over much longer length scales than the local
density n(r), the excess free-energy term becomes

βFex[n,c]

ρ0
= − 1

2
{n(r) ∗ Cnn(r,r ′) ∗ n(r ′)

+ n(r) ∗ Cnc(r,r ′) ∗ �c(r ′)

+ �c(r) ∗ Ccn(r,r ′) ∗ n(r ′)

+ �c(r) ∗ Ccc(r,r ′) ∗ �c(r ′)}, (8)

where we have introduced �c(r) = c(r) − c0 as the deviation
of the concentration from the reference. The four n-c pair-
correlation functions introduced in the excess free energy are
given by

Cnn = ρ0[c2CBB + (1 − c)2CAA + 2c(1 − c)CAB], (9)

Cnc = ρ0[cCBB − (1 − c)CAA + (1 − 2c)CAB], (10)

Ccn = Cnc, (11)

Ccc = ρ0(CBB + CAA − 2CAB). (12)

Differences in the various binary PFC theories stem from
differing approximations of the terms in the free energy stated
in Eqs. (6)–(8). These are discussed briefly next. Further details
of the derivations leading to the above equations, and those
discussed below, are found in Ref. [16].

III. ORIGINAL BINARY PFC MODEL

In the original simplified binary PFC theory of Ref. [1],
all terms in the free energy are expanded about n(r) = 0 and
c(r) = c0, i.e., about their reference states. For the ideal free
energy this results in a polynomial truncated to fourth order:

βFid[n]

ρ0
=

∫
dr

{
n(r)2

2
− η

n(r)3

6
+ χ

n(r)4

12

}
. (13)

The linear term in the expansion is dropped by redefining n

about its average and we have added the fitting parameters
η and χ to fit the free energy away from the reference
parameters. If we assume for simplicity of demonstration
c0 = 1/2, the free energy of mixing becomes a simple fourth-
order polynomial as well:

βFmix[n,c]

ρ0
=

∫
dr

{
2�c(r)2 + 4�c(r)4

3

}
. (14)

The linear couplings to n(r) are dropped in this expansion
by assuming, as we already have, that the concentration field
varies on a much longer length scale than the total density
and noting that the total density is defined about its average.
This argument can also be applied to the linear couplings to
n(r) in the excess free-energy term, which then leaves only the
Cnn and Ccc terms. These two terms are approximated with a
gradient expansion of the form

Cnn(r,r ′) = (C0 + C2∇2 + C4∇4 + · · · )δ(r − r ′), (15)

Ccc(r,r ′) = (ε + Wc∇2 + · · · )δ(r − r ′). (16)
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The expansion parameters C0,C2, and C4 are all dependent
on temperature and concentration. We are required to expand
Cnn to fourth order because the peak of the direct correlation
function in Fourier space is the driving force for solidification.
The concentration field is correlated over a longer length scale
implying that only the short wave vectors are important in Ccc

so we can expand just to quadratic order, effectively treating c

as in the traditional Cahn-Hilliard theory.
Gathering terms, the resulting free-energy functional for

the original simplified binary PFC model [17] is

βF
ρ0

=
∫

dr

{
1

2
n
(
1 − C0 − C2∇2 − C4∇4

)
n − η

n3

6

+χ
n4

12
+ 1

2
�c

(
4 − ε − Wc∇2

)
�c + 4�c4

3

}
. (17)

The strength of the original simplified binary PFC model
is that it retains most of the important physics of binary
alloys in a very reduced theory. For instance, this model is
capable of describing the equilibrium phase diagrams of both
eutectic alloys and materials with a solid-state spinodal or
liquid minimum. Supplied with a diffusive equation of motion,
this model can simulate an impressive diversity of dynamic
phenomena including eutectic growth [1], solute segregation
[18], dendritic growth [1], epitaxial growth [9,10], and crack
formation [19].

The major limitation of the original simplified model is
that the gradient expansion of the density-density correlation
function gives only a crude control over the crystal structures
that can be formed. In fact, as this theory only controls a single
peak in Fourier space it can only solidify into a body centered
cubic (bcc) phase.

A second limitation of the original simplified model is that
it is local in concentration. This means that realistic phase
diagrams from 0 to 100% concentration cannot be produced,
only local phase diagrams around the reference concentration
[20]. The limited concentration range is problematic for
comparing to experimental phase diagrams. To obtain relatable
and quantitative results—a major motivation for the original
binary XPFC model and the model in this paper—we require
the entire free energy of the mixing term in Eq. (7).

IV. ORIGINAL BINARY XPFC MODEL

In the original binary XPFC model seeks to remedy the two
shortcomings of the original simplified binary PFC model.
That is, it seeks to reproduce a variety of crystal lattice
structures and to construct phase diagrams of a complete range
of concentrations. We derive this theory here and compare it
with the original model.

First, the ideal free energy is expanded in precisely the
same manner as before, resulting in the same fourth-order
polynomial:

βFid[n]

ρ0
=

∫
dr

{
n(r)2

2
− η

n(r)3

6
+ χ

n(r)4

12

}
. (18)

The free energy of mixing isleft unexpanded but an overall
scale ω is added to help modify the mixing term away from

the reference concentration:

βFmix[n,c]

ρ0
=

∫
dr

{
ω[n(r) + 1]

×
[
c ln

(
c

c0

)
+ (1 − c) ln

(
1 − c

1 − c0

)]}
. (19)

This unexpanded free energy of mixing will lead to more
accurate global phase diagrams. The excess free energy is
approximated using similar assumptions as in the original
binary PFC model (linear couplings are dropped), but the
density-density correlation function, Cnn, is not expanded.
Also, Greenwood et al. [13] all assumed that the k = 0 mode
of the concentration-concentration correlation function is zero,
leaving only the quadratic term in the expansion:

Ccc(r,r ′) = δ(r − r ′)Wc∇2. (20)

Grouping terms together, the complete free-energy functional
for the original binary XPFC model is

βF
ρ0

=
∫

dr

{
1

2
n(r)

[
1 − Cnn(r,r ′)

] ∗ n(r ′)

−η
n3

6
+ χ

n4

12
+ Wc

2
|∇c(r)|2 + ωfmix(r)

}
, (21)

where fmix(r) is the local free-energy density of mixing:

fmix(r) = [n(r) + 1]

[
c(r) ln

(
c(r)

c0

)

+[1 − c(r)] ln

(
1 − c(r)

1 − c0

)]
. (22)

The density-density correlation function, Cnn, is left un-
expanded in Fourier space but assumed to have a specific
phenomenological real-space form:

Cnn = ζA(c)CAA(r,r ′) + ζB(c)CBB(r,r ′), (23)

where ζA(c) and ζB(c) are interpolation functions, assigned the
forms

ζA(c) = 1 − 3c2 + 2c3, (24)

ζB(c) = ζA(1 − c) (25)

by Greenwood et al. [13].
The remaining elemental correlation functions CAA and

CBB are modeled using the form of the two-point correlations
in the original XPFC model for a pure material introduced by
Greenwood et al. [21]. This is described subsequently.

A. XPFC correlation functions

The main contribution of the XPFC model is that the
density-density correlation function can be modeled in such a
way as to control the crystal lattice structure formed under
solidification and to target different structures at different
concentrations and temperatures. Originally delineated for
pure systems, the XPFC method introduces a model correlation
function with controllable height and reciprocal-lattice vector
position for each family of correlation peaks. This is achieved
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by using Gaussian peaks centered at the reciprocal-lattice
vector positions:

C̃(k) =
∑

α

e
− T

T0 e
− (k−kα )2

2σ2
α (26)

where the index α runs over sets of point-group symmetry-
equivalent reciprocal-lattice vectors, kα is the length
of the reciprocal-lattice vectors in α, and σα is the width of
the peak. Following Ref. [12], temperature dependence of the
correlation peaks is achieved through the prefactors e−T/T0 ,
which give the correct temperature scaling of the amplitudes
at temperatures much higher than the Debye temperature [22].

The primary advantages of the XPFC model are twofold:
They produce realistic phase diagrams and they model a variety
of crystalline lattices. The latter is particularly significant as
it allows for the examination of genuinely novel systems in
comparison with the original simplified model. For example,
the binary XPFC model has been used to study peritectic
systems [13], ordered crystals [12], dislocation-assisted solute
clustering and precipitation [5,6], and solute drag [4]. It is
noteworthy that the above works on clustering have been
validated experimentally in binary and ternary alloys.

Unfortunately, by assuming that the k = 0 mode of the
concentration-concentration correlation function is zero, the
XPFC model restricts its free energy of mixing to an ideal
model of mixing. This model of mixing includes only entropic
contributions to the free energy. In the solid state, this means
that the sole driving force for phase separation is elastic energy,
as the enthalpy of mixing is always zero. This inhibits the
modeling of a variety of binary alloy systems; for instance,
both monotectic and syntectic systems cannot be modeled
without a negative enthalpy of mixing.

A second disadvantage of the present XPFC model is
that the phenomenological form for the correlation function
given by Eqs. (23)–(25) implicitly assumes that there are
well-defined structures at c = 0 and 1. This works well for
modeling eutectic systems, but does not work very well
when we expect a solid phase at intermediate concentration.
These shortcomings are the motivation for the improvements
developed in this paper, which are presented in the following
section.

V. GENERALIZATION OF THE BINARY STRUCTURAL
PHASE FIELD CRYSTAL MODEL

In this section we look at two improvements to the binary
XPFC theory. The improvements, as previously alluded to, are
first to extend the free energy of mixing in the XPFC model to
one with an enthalpy of mixing, and second to generalize the
phenomenological form of the two-point correlation function
in binary alloys.

A. Adding an enthalpy of mixing

Extending the free energy of mixing beyond ideal mixing
is achieved by removing the assumption made by Greenwood
et al. [13] in deriving the binary XPFC model that the
concentration-concentration correlation function has no k =
0 mode. This is the same approach taken in the original
PFC model, though here we keep the ideal mixing term

unexpanded as in the original XPFC alloy model. Specifically,
the correlation function is expanded as

Ccc(r,r ′) = δ(r − r ′)
(
ωε + Wc∇2 + · · · ), (27)

where ε is a parameter that is possibly temperature dependent.
This form results in a free-energy functional of the form

βF
ρ0

=
∫

dr

{
1

2
n(r)[1 − Cnn(r,r ′)] ∗ n(r ′)

−η
n3

6
+ χ

n4

12
+ Wc

2
|∇c(r)|2 + ωfmix(r)

}
, (28)

where the local free-energy density of mixing, fmix, is now

fmix(r) = [n(r) + 1]

[
c(r) ln

(
c(r)

c0

)

+[1 − c(r)] ln

(
1 − c(r)

1 − c0

)]
+ 1

2
ε(c − c0)2. (29)

For simplicity the temperature dependence of the parameter ε

is taken to be linear about a spinodal temperature Tc:

ε(T ) = −4 + ε0(T − Tc). (30)

The resulting model has a free energy of mixing that is
equivalent to the regular solution model and, as such, it makes
a clear connection to other well-known models used elsewhere
in material science. The regular solution model also supplies
the essential physics of a non-negligible enthalpy of mixing.

B. Generalizing the two-point correlation function

To establish a general phenomenology for modeling
density-density correlation functions in alloys, we consider
a density-density correlation function that has the form of
a linear combination of general interpolating functions in
concentration, ζ (c), multiplied by bare correlation functions
C(r,r ′) of individual components:

Cnn(r,r ′; c) =
∑

i

ζi(c)Ci(r,r
′) (31)

where the index i is, for the moment, an arbitrary label.
For example, in the exact theory that emerges from the
original alloy CDFT theory [Eq. (9)], we use the labels i ∈
{AA,AB,BB} to enumerate the three interpolation functions:

ζAA(c) = ρ0(1 − c2), (32)

ζAB(c) = ρ0c(1 − c), (33)

ζBB(c) = ρ0c
2. (34)

This suggests the following definition that we introduce herein
to generalize the density-density correlation function for a
binary alloy. Use the labels i to enumerate the set of crystal
structures known to manifest themselves in an alloy system.
The correlation functions, Ci(r,r ′), are then direct correlation
functions that model the formation of the crystal structure i,
and the associated interpolation functions ζi(c) define the range
of concentrations over which these correlations are valid. In
principle, ζi(c) can also be temperature dependent, although
we do not consider that case in this paper.
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As a simple example, if we wanted to construct a model
of the silver-copper eutectic alloy system, we might start with
some model correlation function for pure silver, Cα(r,r ′), and
for pure copper, Cβ(r,r ′). These two structures, the silver-
rich α phase and the copper-rich β phase, are the only two
relevant crystalline phases in this system; thus, to build the
full density-density correlation function we just need to choose
interpolating functions for each phase. Following Greenwood
et al. [13], for example, we might choose

ζα(c) = 1 − 3c2 + 2c3, (35)

ζβ(c) = 1 − 3(1 − c)2 + 2(1 − c)3. (36)

To model the α and β correlation functions we use the original
XPFC formalism for modeling bare correlation functions, i.e.,
Eq. (26). The α and β phase are both fcc [23] so we can use a
two-peak fcc model for the correlation function as in Ref. [21].

VI. EQUILIBRIUM PROPERTIES OF BINARY ALLOYS

These two changes to the XPFC formalism extend the
possible systems we can study. In this section we explore
the equilibrium properties of the improved XPFC free-energy
functional specialized for three different material phase dia-
grams: eutectic, syntectic, and monotectic.

A. Eutectic phase diagram

While previous PFC models have shown that elastic
energy is a sufficient driving force for eutectic solidification,
our simplified regular solution XPFC model allows for the
examination of the role enthalpy of mixing can play in
eutectic solids. For instance, Murdoch and Schuh noted that
in nanocrystalline binary alloys, while a positive enthalpy
of segregation can stabilize against grain growth via solute
segregation at the grain boundary, if the enthalpy of mixing
becomes too large this effect can be negated by second phase
formation or even macroscopic phase separation [24].

To specialize our simplified regular solution model to the
case of the binary eutectic, we must choose an appropriate
model for the correlation function. Choosing an α phase around
c = 0 and β phase around c = 1, we can recover the pair-
correlation function used in the binary XPFC of Greenwood
et al. [13] with a particular choice of interpolations functions:

ζα(c) = 2c3 − 3c2 + 1, (37)

ζβ(c) = ζα(1 − c). (38)

Choosing, for example, an α and β phase with two-
dimensional hexagonal lattices, differing only by lattice con-
stants, we can produce a phase diagram like that in Fig. 1. The
figure also depicts the phase diagram of the metastable liquid
below the eutectic point showing the binodal and spinodal lines
where the metastable liquid becomes unstable with respect
to phase separation. The spinodal line indicates an inflexion
point in the free energy of the metastable liquid where the
liquid becomes fully unstable with respect to phase separation
whereas the binodal line indicates the coexistence curve of the
decomposed metastable liquid.

FIG. 1. Eutectic phase diagram for triangular α and β solid
phases, and l denotes the liquid. The free-energy parameters are
η = 2, χ = 1, ω = 0.02, ε0 = 26.6, and Tc = 0.15. The parame-
ters of the correlation functions are σ10α = σ10β = 0.8, k10α = 2π ,
k10β = 4π/

√
3, and T0 = 1. The horizontal line denotes the eutectic

temperature.

It is noted that the phase diagram in Fig. 1 and in what
follows were done using the same approach that was used in
numerous PFC literature [13]. The approach is as follows: A
mode expansion for the density is assumed for each crystal
phase (zero amplitudes for the liquid phase). For each phase, a
free energy results, which is a function of amplitudes, average
density, and concentration. This coarse grained free energy of
each phase is then minimized with respect to the amplitudes,
leaving a free-energy density for each phase that is a function
only of the average density and concentration. At this juncture,
we simplify matters by assuming that the average density is
a constant for the system. We then minimize the total free
energy of the system with respect to concentration, assuming
a conserved total concentration field. This latter step considers
separately the coexistence of (1) α-liquid, (2) β-liquid, and
(3) α-β solids over different temperature and concentration
ranges. An original code was developed to carry out these
phase diagram constructions, and implemented using JULIA

[25], MAXIMA.JL [26], and the MAXIMA symbolic computation
engine [27].

B. Syntectic phase diagram

Our improved XPFC model also allows for the study of a
variety of invariant binary reactions that, to date, have not been
studied using phase field crystal models. One such reaction is
the syntectic reaction.

The syntectic reaction, l1 + l2 → α, consists of solidifica-
tion at the interface of two liquids. We can achieve this with
our model by setting the spinodal temperature, Tc, in Eq. (30)
sufficiently high and producing a density-density correlation
function that is peaked at a concentration below the spinodal.
This can be done by choosing a single interpolation function
to be a window function that is centered about an intermediate
concentration cα of the solid phase α. One obvious choice is

ζ (c) = e
− (c−cα )2

2α2
c (39)
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FIG. 2. Phase diagram of a syntectic alloy with a hexagonal solid
phase α. The free-energy parameters are η = 2, χ = 1, ω = 0.3,
ε0 = 10, Tc = 0.35, and c0 = 0.5. The parameters for the correlation
function are α10α = 0.8, k10α = 2π , and T0 = 1 and the parameters
for the window function are c10α = 0.5 and αc = 0.5. The horizontal
line denotes the syntectic temperature.

where αc is a constant. The resulting correlation function for
a hexagonal lattice in a syntectic alloy in two dimensions
becomes

C̃nn(k; c) = e
− (c−cα )2

2α2
c e

− T
T0 e

− (k−kα )2

2α2 , (40)

where we have written the correlation function in Fourier space
and α is the width of the peak corresponding to kα . A phase
diagram that produces a syntectic reaction with an appropriate
choice of parameters is shown in Fig. 2.

C. Monotectic phase diagram

The monotectic reaction is another invariant binary reaction
that has not previously been studied using PFC models. The
monotectic reaction, l1 → α + l2, consists of decomposing
liquid into a solute-poor solid and solute-rich liquid. To model
a monotectic using our XPFC model we hypothesize a solid
phase at c = 0 and set the spinodal temperature higher than the
solidification temperature. To achieve this, we use a window
function peaked around c = 0:

χα(c) = e
− c2

2α2
c . (41)

Again considering a simple hexagonal lattice for the α phase,
we can produce a phase diagram with a monotectic reaction
with an appropriate choice of parameters as shown in Fig. 3.

The improvements to the XPFC formalism made in this
section can be used not only to reveal new details in existing
systems but also to model new systems that have not been
explored with PFC methods before. They provide a general
framework to explore the landscape of other possible binary
alloys with an emphasis that the liquid free energy is a crucial
element in a complete description. It is also noteworthy that the
approach introduced here is extendable in a straightforward
way to multicomponent alloys if the interpolation functions
become multivariate functions of the concentrations.

FIG. 3. Phase diagram of a monotectic alloy with hexagonal α

phase. The free-energy parameters are η = 2, χ = 1, ω = 0.3, ε0 =
10, Tc = 0.35, and c0 = 0.75. The parameters for the correlation
function are α10α = 0.8, k10α = 2π , and T0 = 1 and the parameter for
the window function is αc = 0.4. The horizontal line indicates the
monotectic temperature.

VII. APPLICATION TO PRECIPITATING
NANOPARTICLES FROM SOLUTION

In this section we discuss an application of the binary
XPFC model introduced in Sec. V to a phenomenon in
microstructure evolution. To begin with, we first introduce
a phenomenological set of equations of motion that describe
solute and density diffusion in the binary XPFC model. We
then apply these to the examination of the process of diffusion
limited precipitation from solution. Recent experimental work
on the precipitation of gold and silver nanoparticles [15] and on
the precipitation of calcium carbonate [28] has demonstrated
that the pathway to nucleation can deviate highly from
the approximations of classical nucleation theory (CNT).
Specifically, experiments in both systems observe spinodal
decomposition of the solution prior to nucleation in the solute-
rich phase. In this section, we present early findings from
our model that lend support for this dynamical behavior and,
additionally, show that the growth behavior postnucleation
may be more complex than usual diffusive growth and
coarsening typically observed. To conclude we discuss future
applications both in the study of precipitation and other areas.

A. XPFC dynamics

To examine applications of our improvements to the XPFC
model we begin by considering equations of motion. Following
Ref. [13], we use conservative dynamics for both n(x,t) and
c(x,t):

∂n(x,t)

∂t
= Mn∇2

(
δβ�F/ρ0

δn(x,t)

)
+ ξn(x,t), (42)

∂c(x,t)

∂t
= Mc∇2

(
δβ�F/ρ0

δc(x,t)

)
+ ξc(x,t), (43)

where Mn and Mc are the solute and density mobilities. The
noise terms ξn(x,t) and ξc(x,t) model thermal fluctuations by
obeying a generalized Einstein relation [16]. These equations
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FIG. 4. Experimental observations of multistep nucleation and
proposed three-step pathway due to Loh et al. [15]. Series (a) and
(c) show TEM images of supersaturated gold and silver aqueous
solutions precipitating. Series (b) shows a schematic of the proposed
mechanism. Figure reused with explicit permission from the author.

of motion are largely phenomenological as, strictly speaking,
there is no reason that the local concentration should be
conserved. This conservation can be justified in the limit
that the total density does not deviate far from the reference.
When this is the case we have c ≡ ρB/ρ ≈ ρB/ρ0, which is

conserved. For simplicity, we will carry out simulations in this
paper in this limit.

B. Multistep nucleation of nanoparticles in solution

Many nanoparticle solutions are formed by precipitation
from solution and their size distribution (polydispersity index)
is of key importance to their application. Therefore, a precise
understanding of the kinetic pathway of precipitation is of
crucial importance in designing synthesis techniques of highly
monodisperse nanoparticles.

As stated above, recent experimental work has shown that
precipitation from a solution can follow a pathway that is very
different from that assumed by CNT [15,28]. CNT assumes
that, for binary systems, changes in composition occur simul-
taneously to changes in order. In contrast, these experimental
findings suggest that in certain systems changes in composition
can precede changes in order via spinodal decomposition.
In situ measurements of this multistep nucleation process taken
by Loh et al. [15] for gold and silver nanoparticles can be seen
in Fig. 4. While there is some dispute about whether or not
to call this process a nonclassical nucleation pathway [29,30],
the observed pathway to precipitation raises several questions
about its classification, regardless of semantics.

C. Classical and nonclassical nucleation theories

In CNT, the rate of formation of postcriticality can be
written as an Arrhenius equation:

J = ∂n∗

∂t
= Ae−β�G‡

, (44)

where A is a constant prefactor, �G‡ is the Gibbs free energy
of a critical nucleus, and n∗ is the number of critical nuclei.

Following Ref. [31], the probability of nucleation of a
droplet of volume V , fnuc(t), is then

fnuc(t) =
〈

Ncry

Ntotal

〉
= 1 − e−JV t , (45)

where Ncry and Ntotal are the number of crystalline droplets and
the total number of crystal droplet forming sites, respectively.

CNT assumes that there is a single critical state which
is specified by the thermodynamic parameters of the target
phase at a critical radius R∗. This naive approach dramatically
underestimates the time required to assemble a critical nucleus
due to its simplistic parametrization of the kinetic pathway
[31–33].

Improvements to CNT can be made to the model by
increasing the parameter space describing the nucleation
process. Considering both radius and density of the critical
nucleus [32] gives good agreement with nucleation of globular
proteins, for example. One problem with this approach is the
selection of appropriate parameters. There is no guarantee that
a finite set of parameters will describe the kinetic pathway
taken by a nucleus and if we are without a fundamental
technique for calculating the chosen parameters we have
little way of knowing if our theory is accurate or simply
overfit. In Ref. [33], for example, nucleation data are fit to
the functional form instead of using calculated or otherwise
measured parameters.

Statistical field theories such as the XPFC alloy model can
help provide an answer to this problem by taking an unbiased
approach to the nucleation process within the context of
CDFT, with thermal fluctuations. The critical state, and entire
kinetic pathway, can be examined free of any particular path
parametrization. The equations of motion can be integrated
numerically for an ensemble of systems and nucleation details
measured from the computed results. Moreover, unlike other
numerical approaches to nucleation like molecular dynamics
or formal density functional theory, the PFC model can
examine nucleation on diffusive time scales.

D. XPFC modeling of precipitation

To construct an appropriate free-energy functional for a
system analogous to gold nanoparticles studied by Loh et al.
[15] we consider the structure of its equilibrium phase diagram.
Precipitation is indicative of a simple liquid-solid coexistence
curve. The presumed presence of spinodal decomposition
under certain circumstances indicates that there is a metastable
liquid spinodal submerged beneath the liquid-solid coexistence
curve [29]. We assume that there must exist conditions under
which the spinodal decomposition of the metastable liquid
phase occurs more rapidly than nucleation directly from
solution, i.e., classical nucleation.

Producing a phase diagram in our XPFC model with these
characteristics is very similar to modeling a monotectic system
with the exception that the spinodal temperature Tc must be low
enough to hide the entire liquid spinodal below the coexistence
curve. We will also center the interpolation function ζα(c)
about c = 1 so that the nanocrystalline solid α is favored at
large concentration. The resulting density-density correlation
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FIG. 5. Phase diagram of a precipitating solution with hexagonal
α phase solid. The free-energy parameters are η = 2, χ = 1, ω = 0.3,
ε0 = 30, Tc = 0.15, and c0 = 0.5. The parameters for the correlation
function from Eq. (46) are σ = 0.8, k10 = 2π , T0 = 1, and σc = 0.5.

function for a two-dimensional hexagonal precipitate would
thus be

C̃nn(k; c) = e
− (c−1)2

2σ2
c e

− T
T0 e

− (k−k10)2

2σ2 , (46)

where σc is the width of the interpolation function ζα(c),
which controls the solvent solubility in the precipitate in
this case, and k10 is the length of the [10] reciprocal-lattice
vector of the precipitate in equilibrium. Here σ is the width
corresponding to k10.

An example phase diagram of a system with sample
parameters in Eq. (46) is shown in Fig. 5. The metastable
binodal (coexistence) and spinodal curves are shown below
the coexistence curve.

E. Dynamics of precipitation: Results and discussion

We examined the precipitation process in a system that
follows the XPFC model with density-density correlation func-
tion given by Eq. (46) and corresponding equilibrium phase
diagram in Fig. 5. The situation examined corresponded to a
quench to a temperature below the metastable spinodal curve.
The spinodal curve marks an inflection point in the liquid
free energy, meaning the metastable liquid becomes fully
unstable and decomposes into regions of differing concentra-
tion as a result. A typical microstructure evolution sequence
results for a typical quench of a uniform solution of c = 0.3
from the liquid phase to a temperature T/T0 = 0.07 and is
shown in Fig. 6. Frames (a)–(c) show the initial decomposition
of the liquid, once below the spinodal temperature, into
regions of high and low compositions. Frames (d)–(g) show
that, once the concentration in the solute-rich regions of the
decomposed liquid increases sufficiently, nucleation of the
solid phase begins to occur in these confined liquid volumes.
Once nucleated, the solid regions start and continue to grow
at the expense of the liquid phase. This simulation is a typical
example where the nucleation of precipitates is preceded
by spinodal decomposition, which is consistent with the the
experimental findings mentioned above for the nanoparticle
and calcium carbonate systems [15,28]. While one simulation
sequence is shown here, this scenario was typical of all

FIG. 6. Various stages of precipitation of nanoparticles from solution. All thermodynamic parameters are shared with Fig. 5. The initial
condition is a uniform solution quenched abruptly to T = 0.07. The initial condition has average concentration c = 0.3, and the average
relative density of the system is set to n = 0.05. Mobilities Mn and Mc are set to 1 and Wc is set to 3.0. Numerical parameters are grid spacing
�x = 0.125 on a 1024 × 1024 lattice with time-step size �t = 0.0025. (a–d) Spinodal decomposition of the liquid and initial nucleation within
solute-enriched liquid drops. (e, f) Further nucleation and solid growth at the expense of liquid regions.
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FIG. 7. Droplet growth 〈R(t)〉 vs time. Black line, ∼ t1/2 growth.
Insets: Early hyperdiffusive growth of crystalline nanoparticles and
late-stage hypodiffusive growth.

ensembles we ran and from which we gathered statistics for
the data shown below.

As mentioned above, we observed that, once any solute-rich
regions crystallize, their growth is accelerated at the expense
of uncrystallized solute-rich liquid regions. We refer to this
phenomena as sacrificial growth [Figs. 6(d)–6(f)]. To quantify
the phenomena shown in Fig. 6, we examine the mean radius
〈R(t)〉 of solute-rich domains as a function of time, and average
the results over an ensemble of 120 quenches analogous to
those shown in Fig. 6. Here we define the mean radius of a
crystal drop as the square root of its mean area:

〈R(t)〉 =
√

〈A(t)〉. (47)

The results obtained are not expected to depend on the precise
definition of R(t).

In purely diffusive growth the mean radius should scale
as 〈R(t)〉 ∼ t1/2, while at the late stages of growth, where
coarsening occurs, the growth rate is expected to follow
〈R(t)〉 ∼ t1/3 dynamics. In Fig. 7 we plot 〈R(t)〉 on a log-log
graph. Lines corresponding to the diffusive growth exponent
are also drawn for comparison to numerical results. The
data show that for early times crystalline regions grow at
a hyperdiffusive rate. This decays to hypodiffusive after
uncrystallized regions have disappeared and coarsening takes
over the kinetics of precipitation.

During the sacrificial growth period referred to above,
we observe that nucleation is suppressed in the remaining
uncrystallized, solute-rich, liquid regions. When both crys-
tallized and uncrystallized solute-rich liquid drops exist, the
solute is segregated into crystallized regions because of the
difference in chemical potential. Constricted by surface tension
and deprived of solute, these remaining droplets have a far
slower nucleation rate (thermodynamic driving force) than
when no crystallized regions existed. This can be seen more
quantitatively by examining the fraction of uncrystallized
liquid droplets versus time. This is shown in Fig. 8 for the case
corresponding to the data in Fig. 6. At ∼50% crystallization,
we see a pronounced reduction in the nucleation rate as the

FIG. 8. Fraction of uncrystallized droplets vs time.

diffusive process of sacrificial growth dominates, consistent
with our expected hypothesis above.

VIII. SUMMARY AND CONCLUSIONS

We have presented two generalizations of the binary XPFC
model: the addition of an enthalpy of mixing and a general
phenomenology for modeling density pair-correlation func-
tions. Additionally, we have presented an application of this
generalized model to the study of nonclassical precipitation
pathways of nanoparticles.

We have shown that these generalizations are capable of
modeling a broad class of binary alloys including syntectic
and monotectic materials and can reproduce metastable com-
ponents of material phase diagrams. Investigating the effects
of elasticity on syntectic and monotectic materials is one future
application.

Our application of the generalized model to nanoparticle
precipitation describes the behavior of a quench followed by
the multistep precipitation process of relevance to the precip-
itation of gold nanoparticles observed in recent experiments.
It is noteworthy that the predicted results were done within a
single framework and set parameters corresponding to the new
XPFC alloy model introduced in this paper. The dynamical
results shown here point to a richness in the landscape of
kinetic pathways to precipitation. One direction for future
application of the improved XPFC framework is to explore
more of this landscape to help determine the effect of quench
parameter and solution concentration in nucleation kinetics,
as well as the polydispersity of precipitated particles, key
features of interest to experimental investigations of this topic.
Another area of application of the XPFC model introduced
herein is the examination of elastic versus enthalpic effects
during precipitation.
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